Volume 4, Issue 4 (2018)                   IEM 2018, 4(4): 131-137 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajikhani S, Darban-Sarokhalil D, Babapour E. Antibacterial Susceptibility Profiles and the Presence of Beta-Lactamase Resistance Genes and Virulence Factors in Pseudomonas aeruginosa Isolates. IEM. 2018; 4 (4) :131-137
URL: http://iem.modares.ac.ir/article-4-28097-en.html
1- Microbiology Department, Faculty of Science, Alborz Branch, Islamic Azad University, karaj, Iran
2- Microbiology Department, Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran
Abstract:   (4833 Views)
Aims: Pseudomonas aeruginosa is one of the major causes of nosocomial infections.  This study aimed at investigating the antibacterial susceptibility and the prevalence of virulence and resistance genes of P. from patients in Tehran, Iran.
Materials & Methods: In this cross-sectional study, 70 P. from infection and cystic fibrosis patients from and Pediatric Medical Center, Tehran, Iran during 2017-2018. Antibacterial susceptibility against eleven antibiotics was determined based on Isolates were, then, screened for the presence of virulence and resistance genes by Polymerase Chain Reaction (PCR).
Findings: The highest and lowest antibacterial resistance rates were against ampicillin and respectively. The  and  genes were present in all P.  . The prevalence of and  genes in P. from a total of 18 CF patients was 66.6%, 66.6%, 22.2%, 72.2%, and 77.7%; and in a total of 52 burn patients was  84.7%, 100%, 28.8%, 73.07%, and 64.46%, respectively. VEB, PER, TEM, SHV, and CTX-M  genes were found in 0.0%, 0.0%, 11.1%, 16.6%, and 5.5% P. from CF patients; and in 0.0%, 1 1.9%, 50 96.1%, 88.4%, and 40.3%, P. from burn patients, respectively.
Conclusion: Generally, selective pressure caused by extensive use of antibiotics can be conducive to the selection of MDR bacteria. Therefore, choosing based on precise tests can prevent the increase of resistance in bacteria.
Full-Text [PDF 806 kb]   (514 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2018/06/12 | Accepted: 2018/10/1 | Published: 2018/12/20

1. Gross J, Passmore IJ, Chung JCS, Rzhepishevska O, Ramstedt M, Welch M. Universal soldier: Pseudomonas aeruginosa - an opportunistic generalist. Front Biol. 2013;8(4):387-94. [Link] [DOI:10.1007/s11515-013-1267-x]
2. Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010;5(11):1663-74. [Link] [DOI:10.2217/fmb.10.125]
3. Wu YQ, Shan HW, Zhao XY, Yang XY. Nosocomial infection caused by Pseudomonas aeruginosa in intensive care unit. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2011;23(2):88-90. [Chinese] [Link]
4. Matthijs S, Coorevits A, Gebrekidan TT, Tricot C, Wauven CV, Pirnay JP, et al. Evaluation of oprI and oprL genes as molecular markers for the genus Pseudomonas and their use in studying the biodiversity of a small Belgian River. Res Microbiol. 2013;164(3):254-61. [Link] [DOI:10.1016/j.resmic.2012.12.001]
5. Ben Haj Khalifa A, Moissenet D, Vu Thien H, Khedher M. Virulence factors in Pseudomonas aeruginosa: Mechanisms and modes of regulation. Ann Biol Clin (Paris). 2011;69(4):393-403. [French] [Link]
6. Hamood AN, Colmer-Hamood JA, Carty NL. Regulation of Pseudomonas aeruginosa exotoxin a synthesis. In: Ramos JL, editor. Virulence and gene regulation. Boston MA: Springer; 2004. pp. 389-423. [Link] [DOI:10.1007/978-1-4419-9084-6_14]
7. Gawish AA, Mohamed NA, El-Shennawy GA, Mohamed HA. An investigation of type 3 secretion toxins encoding-genes of Pseudomonas aeruginosa isolates in a University Hospital in Egypt. J Microbiol Infect Dis. 2013;3(03):116-22. [Link] [DOI:10.5799/ahinjs.02.2013.03.0093]
8. Newman JW, Floyd R V., Fothergill JL. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. Vol. 364, FEMS Microbiology Letters. 2017. [Link] [DOI:10.1093/femsle/fnx124]
9. Sabharwal N, Dhall S, Chhibber S, Harjai K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. Int J Mol Epidemiol Genet. 2014;5(3):125-34. [Link]
10. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(Pt 9):1133-48 [Link] [DOI:10.1099/jmm.0.009142-0]
11. Umadevi S, Joseph NM, Kumari K, Easow JM, Kumar Sh, Stephen S, et al. Detection of extended spectrum beta lactamases, ampc beta lactamases and metallobetalactamases in clinical isolates of ceftazidime resistant Pseudomonas aeruginosa. Braz J Microbiol. 2011;42(4):1284-8. [Link] [DOI:10.1590/S1517-83822011000400006]
12. Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, et al. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect. 2008;14 Suppl 1:144-53. [Link] [DOI:10.1111/j.1469-0691.2007.01850.x]
13. Shahcheraghi F, Nikbin VS, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microb Drug Resist. 2009;15(1):37-9. [Link] [DOI:10.1089/mdr.2009.0880]
14. Ferguson MW, Maxwell JA, Vincent TS, Da Silva J, Olson JC. Comparison of the exoS gene and protein expression in soil and clinical isolates of Pseudomonas aeruginosa. Infect Immun. 2001;69(4):2198-210. [Link] [DOI:10.1128/IAI.69.4.2198-2210.2001]
15. Dong D, Zou D, Liu H, Yang Z, Huang S, Liu N, et al. Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China. Front Microbiol. 2015;6:1100. [Link] [DOI:10.3389/fmicb.2015.01100]
16. Tripathy S, Kumar N, Mohanty S, Samanta M, Mandal RN, Maiti NK. Characterisation of Pseudomonas aeruginosa isolated from freshwater culture systems. Microbiol Res. 2007;162(4):391-6. [Link] [DOI:10.1016/j.micres.2006.08.005]
17. Gholami A, Majidpour A, Talebi Taher M, Boustanshenas M, Adabi M. PCR-based assay for the rapid and precise distinction of Pseudomonas aeruginosa from other Pseudomonas species recovered from burns patients. J Prev Med Hyg. 2016;57(2):E81-5. [Link]
18. Lynch SV, Flanagan JL, Sawa T, Fang A, Baek MS, Rubio-Mills A, et al. Polymorphisms in the Pseudomonas aeruginosa type III secretion protein, PcrV - implications for anti-PcrV immunotherapy. Microb Pathog. 2010;48(6):197-204. [Link] [DOI:10.1016/j.micpath.2010.02.008]
19. Winstanley C, Kaye SB, Neal TJ, Chilton HJ, Miksch S, Hart CA, et al. Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J Med Microbiol. 2005;54(Pt 6):519-26. [Link] [DOI:10.1099/jmm.0.46005-0]
20. Wang J, Zhou JY, Qu TT, Shen P, Wei ZQ, Yu YS, et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. Int J Antimicrob Agents. 2010;35(5):486-91. [Link] [DOI:10.1016/j.ijantimicag.2009.12.014]
21. Hocquet D, Plésiat P, Dehecq B, Mariotte P, Talon D, Bertrand X, et al. Nationwide investigation of extended-spectrum β-lactamases, metallo-β-lactamases, and extended-spectrum oxacillinases produced by ceftazidime-resistant Pseudomonas aeruginosa strains in France. Antimicrob Agents Chemother. 2010;54(8):3512-5. [Link] [DOI:10.1128/AAC.01646-09]
22. Heritage J, Ransome N, Chambers PA, Wilcox MH. A comparison of culture and PCR to determine the prevalence of ampicillin-resistant bacteria in the faecal flora of general practice patients. J Antimicrob Chemother. 2001;48(2):287-9. [Link] [DOI:10.1093/jac/48.2.287]
23. Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S, Abada E. Genotypic identification of AmpC β-lactamases production in gram-negative Bacilli isolates. Jundishapur J Microbiol. 2014;7(1):e8556. [Link] [DOI:10.5812/jjm.8556]
24. Barguigua A, El Otmani F, Talmi M, Bourjilat F, Haouzane F, Zerouali K, et al. Characterization of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the community in Morocco. J Med Microbiol. 2011;60(Pt 9):1344-52. [Link] [DOI:10.1099/jmm.0.032482-0]
25. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M. Requirements for pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 2014;10(7):e1004518. [Link] [DOI:10.1371/journal.pgen.1004518]
26. Zhang JF, Zhu HY, Sun YW, Liu W, Huo YM, Liu DJ, et al. Pseudomonas aeruginosa infection after Pancreatoduodenectomy: Risk factors and clinic impacts. Surg Infect (Larchmt). 2015;16(6):769-74. [Link] [DOI:10.1089/sur.2015.041]
27. Reid DW, Kirov SM. Iron, Pseudomonas aeruginosa and cystic fibrosis. Microbiology. 2004;150(Pt 3):516. [Link] [DOI:10.1099/mic.0.26804-0]
28. Amini B, Kamali M, Zarei Mahmoodabadi A, Mortazavi Y, Ebrahim Habibi A, Bayat E, et al. Cloning of catalytic domain of exotoxin a from Pseudomonas aeruginosa. J Zanjan Univ Med Sci. 2010;18(71):24-33. [Persian] [Link]
29. Choy MH, Stapleton F, Willcox MD, Zhu H. Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens- and non-contact lens-related keratitis. J Med Microbiol. 2008;57(Pt 12):1539-46. [Link] [DOI:10.1099/jmm.0.2008/003723-0]
30. Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology. 2001;147(Pt 10):2659-69. [Link] [DOI:10.1099/00221287-147-10-2659]
31. Berthelot P, Attree I, Plésiat P, Chabert J, De Bentzmann S, Pozzetto B, et al. Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: Evidence for a possible association between O serotypes and exo genes. J Infect Dis. 2003;188(4):512-8. [Link] [DOI:10.1086/377000]
32. Vazirani J, Wurity S, Ali MH. Multidrug-resistant Pseudomonas aeruginosa keratitis. Ophthalmology. 2015;122(10):2110-4. [Link] [DOI:10.1016/j.ophtha.2015.06.007]
33. Ahmadi K, Hashemian AM, Pouryaghobi SM, Akhavan R, Rozmina S, Bolvardi E. Antibiotic resistance properties of Pseudomonas aeruginosa isolated from cases of superficial infections at the emergency unit. Jundishapur J Microbiol. 2016;9(1):e27646. [Link] [DOI:10.5812/jjm.27646]
34. Dou Y, Huan J, Guo F, Zhou Z, Shi Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res. 2017;45(3):1124-37. [Link] [DOI:10.1177/0300060517703573]
35. Doosti M, Ramazani A, Garshasbi M. Identification and characterization of Metallo-β-Lactamases producing Pseudomonas aeruginosa clinical isolates in university hospital from Zanjan province, Iran. Iran Biomed J. 2013;17(3):129-33. [Link]
36. Khan JA, Iqbal Z, Ur Rahman S, Farzana K, Khan A. Prevalence and resistance pattern of pseudomonas aeruginosa against various antibiotics. Pak J Pharm Sci. 2008;21(3):311-5. [Link]
37. Shahcheraghi F, Nikbin VS, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of pseudomonas aeruginosa isolated from patients in Tehran. Microb Drug Resist. 2009;15(1):37-9. [Link] [DOI:10.1089/mdr.2009.0880]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.