Volume 9, Issue 2 (2023)                   IEM 2023, 9(2): 179-190 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Adekola H, Ojo D, Balogun S, Dipeolu M, Mohammed M, Amusan A. Seroprevalence of Zika Virus IgM Antibodies in Pregnant Woman in Nigeria. IEM 2023; 9 (2) :179-190
URL: http://iem.modares.ac.ir/article-4-67183-en.html
1- Department of Microbiology, Olabisi Onabanjo University, Ago Iwoye, Ogun State, Nigeria , adekola.hafeez@oouagoiwoye.edu.ng
2- Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
3- Department of Veterinary Public Health and Reproduction, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
4- Department of Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
5- Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
Abstract:   (326 Views)
Backgrounds: In developing countries like Nigeria, screening of Zika virus (ZIKV) infection in pregnant women remains limited due to a lack of diagnostic facilities and non-specific symptoms, leading to potential misdiagnosis of the disease as other febrile illnesses such as malaria or typhoid.
Materials & Methods: To address this issue, this study aimed to investigate the prevalence of anti-ZIKV IgM antibodies in pregnant women using enzyme-linked immunoassay. Additionally, the quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay targeted a specific region of the membrane protein (prM) gene to detect Zika virus presence in the collected serum samples. For a period of four months from December 2021 to March 2022, a total of 360 serum samples were collected from pregnant women attending antenatal care units in two tertiary hospitals located in different regions of Nigeria.
Findings: The results of this study revealed a prevalence of 17.2% (62 samples) for anti-ZIKV IgM antibodies among pregnant women. Further analysis using the RT-qPCR method detected Zika virus (prM gene) in 1.9% (7/62) of the serum samples. In addition to these virological results, the statistical analysis of sociodemographic data, clinical characteristics, and risk factors for ZIKV infection demonstrated a significant correlation between seropositivity and various factors including ethnicity, residence, occupation, and history of arboviral diseases (p< .005).
Conclusion: Given the potential consequences of ZIKV infection in pregnant women, early diagnosis and intervention could improve maternal outcomes and prevent fetal abnormalities.
Keywords: ZIKV, IgM, Pregnancy, Arboviruses
Full-Text [PDF 533 kb]   (108 Downloads)    
Article Type: Original Research | Subject: Virology
Received: 2023/01/31 | Accepted: 2023/05/26 | Published: 2023/08/19

References
1. [1] Marbán-Castro E, Goncé A, Fumadó V, Romero-Acevedo L, Bardají A. Zika virus infection in pregnant women and their children: A review. Eur J Obstet Gynecol Reprod Biol. 2021;265:162-8. [DOI:10.1016/j.ejogrb.2021.07.012] [PMID]
2. [2] Rasmussen SA, Jamieson DJ. Teratogen update: Zika virus and pregnancy. Birth Defects Res. 2020;112:1139-49. [DOI:10.1002/bdr2.1781] [PMID]
3. [3] Kobres PY, Chretien JP, Johansson MA, Morgan JJ, Whung PY, Mukundan H, et al. A systematic review and evaluation of Zika virus forecasting and prediction research during a public health emergency of international concern. PLoS Negl Trop Dis. 2019;13(10):e0007451. [DOI:10.1371/journal.pntd.0007451] [PMID] []
4. [4] Otu AA, Udoh UA, Ita OI, Hicks JP, Ukpeh I, Walley J. Prevalence of Zika and malaria in patients with fever in secondary healthcare facilities in south-eastern Nigeria. Trop Doct. 2019;50(1):22-30. [DOI:10.1177/0049475519872580]
5. [5] Iheonu C, Urama NE. Addressing poverty challenges in Nigeria (vol. 1). African Heritage Institution; 2019.
6. [6] Kura IS, Ahmad H, Olayemi IK, Solomon D, Ahmad AH, Salim H. The status of knowledge, attitude, and practice in relation to major mosquito borne diseases among community of Niger State, Nigeria. Afr J Biomed Res. 2022;25(3):339-46.
7. [7] Guanche Garcell H, Gutiérrez García F, Ramirez Nodal M, Ruiz Lozano A, Pérez Díaz CR, González Valdés A, et al. Clinical relevance of Zika symptoms in the context of a Zika dengue epidemic. J Infect Public Health. 2020;13(2):173-6. [DOI:10.1016/j.jiph.2019.07.006] [PMID]
8. [8] Sittikul P, Sriburin P, Rattanamahaphoom J, Limkittikul K, Sirivichayakul C, Chatchen S. Combining immunoassays to identify Zika virus infection in dengue-endemic areas. Trop Med Infect Dis. 2022;7(10):254. [DOI:10.3390/tropicalmed7100254] [PMID] []
9. [9] Anejo-Okopi J, Gotom DY, Chiehiura NA, Okojokwu JO, Amanyi DO, Egbere JO, et al. The seroprevalence of Zika virus infection among HIV positive and HIV negative pregnant women in Jos, Nigeria. Hosts and Viruses. 2020;7(6):129-36. [DOI:10.17582/journal.hv/2020/7.6.129.136]
10. [10] Oluwole T, Fowotade A, Mirchandani D, Almeida S, Plante KS, Weaver S, et al. Seroprevalence of some arboviruses among pregnant women in Ibadan, southwestern Nigeria. Int J Infect Dis. 2022;116:S130. [DOI:10.1016/j.ijid.2021.12.307]
11. [11] Kolawole OM, Suleiman MM, Bamidele EP. Molecular epidemiology of Zika virus and Rubella virus in pregnant women attending Sobi Specialist Hospital, Ilorin, Nigeria. Int J Res Med Sci. 2020;8(6):2275-83. [DOI:10.18203/2320-6012.ijrms20202234]
12. [12] Shaibu JO, Okwuraiwe AP, Jakkari A, Dennis A, Akinyemi KO, Li J, et al. Sero-molecular prevalence of Zika virus among pregnant women attending some public hospitals in Lagos State, Nigeria. Eur J Med Health Sci. 2021;3(5):77-82. [DOI:10.24018/ejmed.2021.3.5.1075]
13. [13] Oderinde B, Mora-Cardenas E, Carletti T, Baba M, Marcello A. Prevalence of locally undetected acute infections of flaviviruses in north-eastern Nigeria. Virus Res. 2020; 286(43):198060. [DOI:10.1016/j.virusres.2020.198060] [PMID]
14. [14] Mathé P, Egah DZ, Müller JA, Shehu NY, Obishakin ET, Shwe DD, et al. Low Zika virus seroprevalence among pregnant women in north central Nigeria, 2016. J Clin Virol. 2018;105:35-40. [DOI:10.1016/j.jcv.2018.05.011]
15. [15] Rosenberg ES, Doyle K, Munoz-Jordan JL, Klein L, Adams L, Lozier M, et al. Prevalence and incidence of Zika virus infection among household contacts of patients with Zika virus disease, Puerto Rico, 2016-2017. J Infect Dis. 2019;220(6):932-9. [DOI:10.1093/infdis/jiy689] []
16. [16] Adams LE, Sánchez-González L, Rodriguez DM, Ryff K, Major C, Lorenzi O, et al. Risk factors for infection with Chikungunya and Zika viruses in southern Puerto Rico: A community-based cross-sectional seroprevalence survey. PLoS Negl Trop Dis. 2022;16(6):e0010416. [DOI:10.1371/journal.pntd.0010416] [PMID] []
17. [17] Soghaier MA, Abdelgadir DM, Abdelkhalig SM, Kafi H, Zarroug IMA, Sall AA, et al. Evidence of pre-existing active Zika virus circulation in Sudan prior to 2012. BMC Res Notes. 2018;11:1-6. [DOI:10.1186/s13104-018-4027-9] [PMID] []
18. [18] Souza WV, Albuquerque MD, Vazquez E, Bezerra LC, Mendes AD, Lyra TM, et al. Microcephaly epidemic related to the Zika virus and living conditions in Recife, northeast Brazil. BMC Public Health. 2018;18:1-7. [DOI:10.1186/s12889-018-5039-z] [PMID] []
19. [19] Nery Jr N, Aguilar Ticona JP, Gambrah C, Doss-Gollin S, Aromolaran A, Rastely-Júnior V, et al. Social determinants associated with Zika virus infection in pregnant women. PLoS Negl Trop Dis. 2021;15(7):e0009612. [DOI:10.1371/journal.pntd.0009612] [PMID] []
20. [20] Mwanyika GO, Sindato C, Rugarabamu S, Rumisha SF, Karimuribo ED, Misinzo G, et al. Seroprevalence and associated risk factors of chikungunya, dengue, and Zika in eight districts in Tanzania. Int J Infect Dis. 2021;111:271-80. [DOI:10.1016/j.ijid.2021.08.040]
21. [21] Phatihattakorn C, Wongsa A, Pongpan K, Anuwuthinawin S, Mungmanthong S, Wongprasert M, et al. Seroprevalence of Zika virus in pregnant women from central Thailand. PLoS One. 2021;16(9):e0257205. [DOI:10.1371/journal.pone.0257205] [PMID] []
22. [22] Brady OJ, Osgood-Zimmerman A, Kassebaum NJ, Ray SE, De Araùjo VE, Da Nóbrega AA, et al. The association between Zika virus infection and microcephaly in Brazil 2015-2017: An observational analysis of over 4 million births. PLoS Med. 2019;16(3):e1002755. [DOI:10.1371/journal.pmed.1002755] [PMID] []
23. [23] Asebe G, Michlmayr D, Mamo G, Abegaz WE, Endale A, Medhin G, et al. Seroprevalence of yellow fever, chikungunya, and Zika virus at a community level in the Gambella region, southwest Ethiopia. PLoS One. 2021;16(7):e0253953. [DOI:10.1371/journal.pone.0253953] [PMID] []
24. [24] Sirinam S, Chatchen S, Arunsodsai W, Guharat S, Limkittikul K. Seroprevalence of Zika virus in Amphawa district, Thailand, after the 2016 pandemic. Viruses. 2022;14(3):476. [DOI:10.3390/v14030476] [PMID] []
25. [25] Marbán-Castro E, Arrieta GJ, Martínez MJ, González R, Bardají A, Menéndez C, et al. High seroprevalence of antibodies against arboviruses among pregnant women in rural Caribbean Colombia in the context of the Zika virus epidemic. Antibodies. 2020;9(4):56. [DOI:10.3390/antib9040056] []
26. [26] Sirohi D, Kuhn RJ. Zika virus structure, maturation, and receptors. J Infect Dis. 2017;216(Suppl 10):S935-44. [DOI:10.1093/infdis/jix515] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.