Volume 9, Issue 3 (2023)                   IEM 2023, 9(3): 201-208 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vaez H, Yazdanpour Z, Khademi F, Pishdadian A. Prevalence and Antibiotic Resistance Patterns of Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa Isolated from Patients in a Hospital in Zabol, Southeast of Iran. IEM 2023; 9 (3) :201-208
URL: http://iem.modares.ac.ir/article-4-71193-en.html
1- Department of Microbiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran , hamidvaez@hotmail.com
2- Department of Microbiology, School of medicine, Ardabil University of Medical Sciences, Ardabil, Iran
3- Department of Immunology, School of medicine, Zabol University of Medical Sciences, Zabol, Iran
Abstract:   (569 Views)
Background: Treatment of infections caused by metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa (P. aeruginosa) is a major healthcare-associated concern. Therefore, the purpose of this study was to ascertain antibiotic resistance patterns and prevalence of MBL genes in clinical isolates of P. aeruginosa.
Materials & Methods:   In total, 90 non-repetitive clinical isolates of P. aeruginosa were collected from clinical specimens of patients who referred to Amir Al-Momenin hospital in Zabol, southeast of Iran, from January 2019 to November 2022. Antibiotic susceptibility patterns were determined according to CLSI guidelines. Combined disk test (CDT) was used to detect MBL-producing P. aeruginosa isolates. MBL genes (blaIMP, blaVIM, blaNDM, and blaSPM) were detected by PCR (polymerase chain reaction) method.
Findings: The isolates were mostly resistant to ceftriaxone (51.1%, 46 of 90) and gentamicin (43.3%, 39 of 90). Based on CDT results, 89.4% (17 of 19) of carbapenem-resistant isolates were MBL positive. In addition, MBL genes including blaVIM, blaIMP, and blaNDM were detected in 20% (18 of 90), 8.9% (8 of 90), and 5.6% (5 of 90) of the isolates, respectively.
Conclusions: Based on this study findings, the use of ceftriaxone and gentamicin should be restricted. In addition, MBL genes (blaVIM and blaIMP) seem to play a crucial role in the spread of carbapenem-resistant infections and the emergence of multidrug-resistant isolates, leading to antibiotic treatment failure.
Full-Text [PDF 483 kb]   (141 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2023/08/22 | Accepted: 2023/10/9 | Published: 2023/10/18

1. References 1. Tenover FC, Nicolau DP, Gill CM. Carbapenemase-producing Pseudomonas aeruginosa -An emerging challenge. Emerg Microbes Infect. 2022;11(1):811-4. [DOI:10.1080/22221751.2022.2048972] [PMID] []
2. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances, and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199. [DOI:10.1038/s41392-022-01056-1] [PMID] []
3. Rebold N, Rybak MJ. Therapeutic strategies for emerging multidrug-resistant Pseudomonas aeruginosa. Infect Dis Ther. 2022;11(2):661-82. [DOI:10.1007/s40121-022-00591-2] [PMID] []
4. Verdial C, Serrano I, Tavares L, Gil S, Oliveira M. Mechanisms of antibiotic and biocide resistance that contribute to Pseudomonas aeruginosa persistence in the hospital environment. Biomedicines. 2023;11(4):1221. [DOI:10.3390/biomedicines11041221] [PMID] []
5. Sastre-Femenia MÀ, Fernández-Muñoz A, Gomis-Font MA, Taltavull B, López-Causapé C, Arca-Suárez J. et al. Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology, and resistance mechanisms: A nation-wide five-year time lapse analysis. Lancet Reg Health Eur. 2023;34:100736. [DOI:10.1016/j.lanepe.2023.100736] [PMID] []
6. Vaez H, Salehi-Abargouei A, Ghalehnoo ZR, Khademi F. Multidrug resistant Pseudomonas aeruginosa in Iran: A systematic review and meta-analysis. J Glob Infect Dis. 2018;10(4):212-7. [DOI:10.4103/jgid.jgid_113_17] [PMID] []
7. Vaez H, Salehi-Abargouei A, Khademi F. Systematic review and meta-analysis of imipenem-resistant Pseudomonas aeruginosa prevalence in Iran. Germs. 2017;7(2):86-97. [DOI:10.18683/germs.2017.1113] [PMID] []
8. Vaez H, Khademi F, Salehi-Abargouei A, Sahebkar A. Metallo-beta-lactamase-producing Pseudomonas aeruginosa in Iran: A systematic review and meta-analysis. Infez Med. 2018;26(3):216-25.
9. Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: An ocular perspective. Clin Exp Optom. 2018;101(2):162-71. [DOI:10.1111/cxo.12621] [PMID]
10. Mahon C, Lehman, D, Manuselis G. Text book of diagnostic microbiology. 6th ed. USA, New York: Elsevier; 2016.
11. Clinical and Laboratory Standards Institute. CLSI supplement M100: Performance standards for antimicrobial susceptibility testing. 28th ed.. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
12. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):10-128. [DOI:10.1128/CMR.00031-19] [PMID] []
13. Safarirad S, Arzanlou M, Mohammadshahi J, Vaez H, Sahebkar A, Khademi F. Prevalence and characteristics of metallo-beta-lactamase-positive and high-risk clone ST235 Pseudomonas aeruginosa at Ardabil hospitals. Jundishapur J Microbiol. 2021;14(3):e115819. [DOI:10.5812/jjm.115819]
14. Delarampour A, Ghalehnoo ZR, Khademi F, Delarampour M, Vaez H. Molecular detection of carbapenem-resistant genes in clinical isolates of Klebsiella pneumoniae. Ann Ig. 2019;31(4):349-55.
15. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119-23. [DOI:10.1016/j.diagmicrobio.2010.12.002] [PMID]
16. Khademi F, Ashrafi SS, Neyestani Z, Vaez H, Sahebkar A. Prevalence of class I, II, and III integrons in multidrug-resistant and carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Gene Rep. 2021;25:101407. [DOI:10.1016/j.genrep.2021.101407]
17. Rahman MM, Alam Tumpa MA, Zehravi M, Sarker MT, Yamin M, Islam MR, et al. An overview of antimicrobial stewardship optimization: The use of antibiotics in humans and animals to prevent resistance. Antibiotics. 2022;11(5):667. [DOI:10.3390/antibiotics11050667] [PMID] []
18. Bazghandi SA, Arzanlou M, Peeridogaheh H, Vaez H, Sahebkar A, Khademi F. Prevalence of virulence genes and drug resistance profiles of Pseudomonas aeruginosa isolated from clinical specimens. Jundishapur J Microbiol. 2021;14(8):e118452. [DOI:10.5812/jjm.118452]
19. Nikokar I, Tishayar A, Flakiyan Z. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa isolated from burn patients in Guilan, Iran. Iran J Microbiol. 2013;5(1):36-41
20. Bokaeian M, Shahraki Zahedani S, Soltanian Bajgiran M, Ansari Moghaddam A. Frequency of PER, VEB, SHV, TEM, and CTX-M genes in resistant strains of Pseudomonas aeruginosa producing extended spectrum β-lactamases. Jundishapur J Microbiol. 2015;8(1):e13783. [DOI:10.5812/jjm.13783] [PMID] []
21. Radan M, Moniri R, Khorshidi A, Gilasi H, Norouzi Z, Beigi F, et al. Emerging carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP among burn patients in Isfahan, Iran. Arch Trauma Res. 2016;5(3):e33664. [DOI:10.5812/atr.33664] [PMID] []
22. Talebi-Taher M, Majidpour A, Gholami A, Rasouli-Kouhi S, Adabi M. Role of efflux pump inhibitor in decreasing antibiotic cross-resistance of Pseudomonas aeruginosa in a burn hospital in Iran. J Infect Dev Ctries. 2016;10(6):600-4. [DOI:10.3855/jidc.7619] [PMID]
23. European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019.
24. Mirbagheri SZ, Meshkat Z, Naderinasab M, Rostami S, Nabavinia MS, Rahmati M. Study on imipenem resistance and prevalence of blaVIM1 and blaVIM2 metallo-beta lactamases among clinical isolates of Pseudomonas aeruginosa from Mashhad, northeast of Iran. Iran J Microbiol. 2015;7(2):72-8.
25. Khorvash F, Yazdani MR, Shabani S, Shabani S, Alizadeh H, Soudi AA. Detection of different types of metallo-β-lactamases among Pseudomonas aeruginosa isolates obtained from intensive care unit. J Med Microbiol Infect Dis. 2014;2(2):84-90.
26. Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant Gram-negative bacteria. Front Cell Infect Microbiol. 2022:12:823684. [DOI:10.3389/fcimb.2022.823684] [PMID] []
27. Castro-Sánchez E, Moore LS, Husson F, Holmes AH. What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. BMC Infect Dis. 2016;16(1):1-5. [DOI:10.1186/s12879-016-1810-x] [PMID] []
28. Dávalos-Almeyda M, Guerrero A, Medina G, Dávila-Barclay A, Salvatierra G, Calderón M, et al. Antibiotic use and resistance knowledge assessment of personnel on chicken farms with high levels of antimicrobial resistance: A cross-sectional survey in Ica, Peru. Antibiotics. 2022;11(2):190. [DOI:10.3390/antibiotics11020190] [PMID] []
29. Shariati A, Azimi T, Ardebili A, Chirani AS, Bahramian A, Pormohammad A. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect. 2017;21:75-80. [DOI:10.1016/j.nmni.2017.10.013] [PMID] []
30. Vaez H, Sahebkar A, Khademi F. Carbapenem-resistant Klebsiella pneumoniae in Iran: A systematic review and meta-analysis. J Chemother. 2019;31(1):1-8. [DOI:10.1080/1120009X.2018.1533266] [PMID]
31. Saha K, Kabir ND, Islam MR, Amin MB, Hoque KI, Halder K, et al. Isolation and characterization of carbapenem-resistant Pseudomonas aeruginosa from hospital environments in tertiary care hospitals in Dhaka, Bangladesh. J Glob Antimicrob Resist. 2022;30:31-7. [DOI:10.1016/j.jgar.2022.04.008] [PMID]
32. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, et al. Mechanisms of action of carbapenem resistance. Antibiotics. 2022;11(3):421. [DOI:10.3390/antibiotics11030421] [PMID] []

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.