1. References
1. Tenover FC, Nicolau DP, Gill CM. Carbapenemase-producing Pseudomonas aeruginosa -An emerging challenge. Emerg Microbes Infect. 2022;11(1):811-4. [
DOI:10.1080/22221751.2022.2048972] [
PMID] [
]
2. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances, and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199. [
DOI:10.1038/s41392-022-01056-1] [
PMID] [
]
3. Rebold N, Rybak MJ. Therapeutic strategies for emerging multidrug-resistant Pseudomonas aeruginosa. Infect Dis Ther. 2022;11(2):661-82. [
DOI:10.1007/s40121-022-00591-2] [
PMID] [
]
4. Verdial C, Serrano I, Tavares L, Gil S, Oliveira M. Mechanisms of antibiotic and biocide resistance that contribute to Pseudomonas aeruginosa persistence in the hospital environment. Biomedicines. 2023;11(4):1221. [
DOI:10.3390/biomedicines11041221] [
PMID] [
]
5. Sastre-Femenia MÀ, Fernández-Muñoz A, Gomis-Font MA, Taltavull B, López-Causapé C, Arca-Suárez J. et al. Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology, and resistance mechanisms: A nation-wide five-year time lapse analysis. Lancet Reg Health Eur. 2023;34:100736. [
DOI:10.1016/j.lanepe.2023.100736] [
PMID] [
]
6. Vaez H, Salehi-Abargouei A, Ghalehnoo ZR, Khademi F. Multidrug resistant Pseudomonas aeruginosa in Iran: A systematic review and meta-analysis. J Glob Infect Dis. 2018;10(4):212-7. [
DOI:10.4103/jgid.jgid_113_17] [
PMID] [
]
7. Vaez H, Salehi-Abargouei A, Khademi F. Systematic review and meta-analysis of imipenem-resistant Pseudomonas aeruginosa prevalence in Iran. Germs. 2017;7(2):86-97. [
DOI:10.18683/germs.2017.1113] [
PMID] [
]
8. Vaez H, Khademi F, Salehi-Abargouei A, Sahebkar A. Metallo-beta-lactamase-producing Pseudomonas aeruginosa in Iran: A systematic review and meta-analysis. Infez Med. 2018;26(3):216-25.
9. Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: An ocular perspective. Clin Exp Optom. 2018;101(2):162-71. [
DOI:10.1111/cxo.12621] [
PMID]
10. Mahon C, Lehman, D, Manuselis G. Text book of diagnostic microbiology. 6th ed. USA, New York: Elsevier; 2016.
11. Clinical and Laboratory Standards Institute. CLSI supplement M100: Performance standards for antimicrobial susceptibility testing. 28th ed.. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
12. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):10-128. [
DOI:10.1128/CMR.00031-19] [
PMID] [
]
13. Safarirad S, Arzanlou M, Mohammadshahi J, Vaez H, Sahebkar A, Khademi F. Prevalence and characteristics of metallo-beta-lactamase-positive and high-risk clone ST235 Pseudomonas aeruginosa at Ardabil hospitals. Jundishapur J Microbiol. 2021;14(3):e115819. [
DOI:10.5812/jjm.115819]
14. Delarampour A, Ghalehnoo ZR, Khademi F, Delarampour M, Vaez H. Molecular detection of carbapenem-resistant genes in clinical isolates of Klebsiella pneumoniae. Ann Ig. 2019;31(4):349-55.
15. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119-23. [
DOI:10.1016/j.diagmicrobio.2010.12.002] [
PMID]
16. Khademi F, Ashrafi SS, Neyestani Z, Vaez H, Sahebkar A. Prevalence of class I, II, and III integrons in multidrug-resistant and carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Gene Rep. 2021;25:101407. [
DOI:10.1016/j.genrep.2021.101407]
17. Rahman MM, Alam Tumpa MA, Zehravi M, Sarker MT, Yamin M, Islam MR, et al. An overview of antimicrobial stewardship optimization: The use of antibiotics in humans and animals to prevent resistance. Antibiotics. 2022;11(5):667. [
DOI:10.3390/antibiotics11050667] [
PMID] [
]
18. Bazghandi SA, Arzanlou M, Peeridogaheh H, Vaez H, Sahebkar A, Khademi F. Prevalence of virulence genes and drug resistance profiles of Pseudomonas aeruginosa isolated from clinical specimens. Jundishapur J Microbiol. 2021;14(8):e118452. [
DOI:10.5812/jjm.118452]
19. Nikokar I, Tishayar A, Flakiyan Z. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa isolated from burn patients in Guilan, Iran. Iran J Microbiol. 2013;5(1):36-41
20. Bokaeian M, Shahraki Zahedani S, Soltanian Bajgiran M, Ansari Moghaddam A. Frequency of PER, VEB, SHV, TEM, and CTX-M genes in resistant strains of Pseudomonas aeruginosa producing extended spectrum β-lactamases. Jundishapur J Microbiol. 2015;8(1):e13783. [
DOI:10.5812/jjm.13783] [
PMID] [
]
21. Radan M, Moniri R, Khorshidi A, Gilasi H, Norouzi Z, Beigi F, et al. Emerging carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP among burn patients in Isfahan, Iran. Arch Trauma Res. 2016;5(3):e33664. [
DOI:10.5812/atr.33664] [
PMID] [
]
22. Talebi-Taher M, Majidpour A, Gholami A, Rasouli-Kouhi S, Adabi M. Role of efflux pump inhibitor in decreasing antibiotic cross-resistance of Pseudomonas aeruginosa in a burn hospital in Iran. J Infect Dev Ctries. 2016;10(6):600-4. [
DOI:10.3855/jidc.7619] [
PMID]
23. European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019.
24. Mirbagheri SZ, Meshkat Z, Naderinasab M, Rostami S, Nabavinia MS, Rahmati M. Study on imipenem resistance and prevalence of blaVIM1 and blaVIM2 metallo-beta lactamases among clinical isolates of Pseudomonas aeruginosa from Mashhad, northeast of Iran. Iran J Microbiol. 2015;7(2):72-8.
25. Khorvash F, Yazdani MR, Shabani S, Shabani S, Alizadeh H, Soudi AA. Detection of different types of metallo-β-lactamases among Pseudomonas aeruginosa isolates obtained from intensive care unit. J Med Microbiol Infect Dis. 2014;2(2):84-90.
26. Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant Gram-negative bacteria. Front Cell Infect Microbiol. 2022:12:823684. [
DOI:10.3389/fcimb.2022.823684] [
PMID] [
]
27. Castro-Sánchez E, Moore LS, Husson F, Holmes AH. What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. BMC Infect Dis. 2016;16(1):1-5. [
DOI:10.1186/s12879-016-1810-x] [
PMID] [
]
28. Dávalos-Almeyda M, Guerrero A, Medina G, Dávila-Barclay A, Salvatierra G, Calderón M, et al. Antibiotic use and resistance knowledge assessment of personnel on chicken farms with high levels of antimicrobial resistance: A cross-sectional survey in Ica, Peru. Antibiotics. 2022;11(2):190. [
DOI:10.3390/antibiotics11020190] [
PMID] [
]
29. Shariati A, Azimi T, Ardebili A, Chirani AS, Bahramian A, Pormohammad A. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect. 2017;21:75-80. [
DOI:10.1016/j.nmni.2017.10.013] [
PMID] [
]
30. Vaez H, Sahebkar A, Khademi F. Carbapenem-resistant Klebsiella pneumoniae in Iran: A systematic review and meta-analysis. J Chemother. 2019;31(1):1-8. [
DOI:10.1080/1120009X.2018.1533266] [
PMID]
31. Saha K, Kabir ND, Islam MR, Amin MB, Hoque KI, Halder K, et al. Isolation and characterization of carbapenem-resistant Pseudomonas aeruginosa from hospital environments in tertiary care hospitals in Dhaka, Bangladesh. J Glob Antimicrob Resist. 2022;30:31-7. [
DOI:10.1016/j.jgar.2022.04.008] [
PMID]
32. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, et al. Mechanisms of action of carbapenem resistance. Antibiotics. 2022;11(3):421. [
DOI:10.3390/antibiotics11030421] [
PMID] [
]