1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-90. [
DOI:10.1001/jamaneurol.2020.1127] [
PMID] [
]
2. Studart-Neto A, Guedes BF, Tuma RL, Camelo Filho AE, Kubota GT, Iepsen BD, et al. Neurological consultations and diagnoses in a large, dedicated COVID-19 university hospital. Arq Neuropsiquiatr. 2020;78(8):494-500. [
DOI:10.1590/0004-282x20200089] [
PMID]
3. Misra S, Kolappa K, Prasad M, Radhakrishnan D, Thakur KT, Solomon T, et al. Frequency of neurologic manifestations in COVID-19: A systematic review and meta-analysis. Neurology. 2021;97(23):e2269-81. [
DOI:10.1212/WNL.0000000000012930] [
PMID] [
]
4. Brola W, Wilski M. Neurological consequences of COVID-19. Pharmacol Rep. 2022;74(6):1208-22. [
DOI:10.1007/s43440-022-00424-6] [
PMID] [
]
5. Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767-83. [
DOI:10.1016/S1474-4422(20)30221-0] [
PMID]
6. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yan L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18-22.
https://doi.org/10.1016/j.bbi.2020.04.043 [
DOI:10.1016/j.bbi.2020.03.031]
7. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995-8. [
DOI:10.1021/acschemneuro.0c00122] [
PMID]
8. Yassin A, Nawaiseh M, Shaban A, Alsherbini K, El-Salem K, Soudah O, et al. Neurological manifestations and complications of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. BMC Neurol. 2021;21:1-7. [
DOI:10.1186/s12883-021-02161-4] [
PMID] [
]
9. Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol. 2021;268(9):3059-71. [
DOI:10.1007/s00415-021-10406-y] [
PMID] [
]
10. Nabizadeh F, Balabandian M, Sodeifian F, Rezaei N, Rostami MR, Moghadasi AN. Autoimmune encephalitis associated with COVID-19: A systematic review. Mult Scler Relat Dis. 2022;62:103795. [
DOI:10.1016/j.msard.2022.103795] [
PMID] [
]
11. Guedes BF. NeuroCOVID-19: A critical review. Arq Neuro Psiquiatr. 2022;80(5 Suppl 1):281-9. [
DOI:10.1590/0004-282x-anp-2022-s136] [
PMID] [
]
12. Pinzona RT, Wijayaa VO, Jodya AA, Nunsioa PN, Buana RB. Persistent neurological manifestations in long COVID-19 syndrome: A systematic review and meta-analysis. J Infect Public Health. 2022;15(8):856-69. [
DOI:10.1016/j.jiph.2022.06.013] [
PMID] [
]
13. Xue H, Zeng L, He X, Xu D, Ren K. Autoimmune encephalitis in COVID-19 patients: A systematic review of case reports and case series. Front Neurol. 2023;14:1207883. [
DOI:10.3389/fneur.2023.1207883] [
PMID] [
]
14. Stoian A, Stoian M, Bajko Z, Maier S, Andone S, Cioflinc RA, et al. Autoimmune encephalitis in COVID-19 infection: Our experience and systematic review of the literature. Biomedicines. 2022;10(4):774. [
DOI:10.3390/biomedicines10040774] [
PMID] [
]
15. Islam MA, Cavestro C, Alam SS, Kundu S, Kamal MA, Reza F. Encephalitis in patients with COVID-19: A systematic evidence-based analysis. Cells. 2022;11(16):2575. [
DOI:10.3390/cells11162575] [
PMID] [
]
16. Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med. 2018;378(9):840-51. [
DOI:10.1056/NEJMra1708712] [
PMID]
17. Kayser MS, Dalmau J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr Res. 2016;176(1):36-40. [
DOI:10.1016/j.schres.2014.10.007] [
PMID] [
]
18. Miya K, Takahashi Y, Mori H. Anti-NMDAR autoimmune encephalitis. Brain Dev. 2014;36(8):645-52. [
DOI:10.1016/j.braindev.2013.10.005] [
PMID]
19. Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, et al. Treatment and prognostic factors for long-term outcome in patients with anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: A cohort study. Lancet Neurol. 2013;12(2):157-65. [
DOI:10.1016/S1474-4422(12)70310-1] [
PMID]
20. Dalmau J, Armangué T, Planagumà J, Radosevic M, Mannara F, Leypoldt F, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: Mechanisms and models. Lancet Neurol. 2019;18(11):1045-57. [
DOI:10.1016/S1474-4422(19)30244-3] [
PMID]
21. Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391-404. [
DOI:10.1016/S1474-4422(15)00401-9] [
PMID]
22. Wang H. Anti-NMDA receptor encephalitis and vaccination. Int J Mol Sci. 2017;18(1):193. [
DOI:10.3390/ijms18010193] [
PMID] [
]
23. Schabitz WR, Rogalewski A, Hagemisteir C, Bien CG. VZV brainstem encephalitis triggers NMDA receptor immunoreaction. Neurology. 2014;83(24):2309-11. [
DOI:10.1212/WNL.0000000000001072] [
PMID]
24. Vasilevska V, Guest PC, Bernstein HG, Schroeter ML, Geis C, Steiner J. Molecular mimicry of NMDA receptors may contribute to neuropsychiatric symptoms in severe COVID-19 cases. J Neuroinflammation. 2021;18(1):1-8. [
DOI:10.1186/s12974-021-02293-x] [
PMID] [
]
25. McHattie AW, Coebergh J, Khan F, Morgante F. Palilalia as a prominent feature of anti-NMDA receptor encephalitis in a woman with COVID-19. J Neurol. 2021;268(11):3995-7. [
DOI:10.1007/s00415-021-10542-5] [
PMID] [
]
26. Mukherjee J, Goyal S, Arshad F, Nashi S, Srijithesh PR, Kulkarni GB, et al. Co-occurrence of anti-N-methyl-D-aspartate receptor encephalitis and COVID-19 infection: Case series of two patients with a brief review of literature. Asian J Med Sci. 2022;13(8):245-9. [
DOI:10.3126/ajms.v13i8.44089]
27. Lee H, Jeon JH, Choi H, Koh SH, Lee KY, Lee YJ, et al. Anti-N-methyl-D-aspartate receptor encephalitis after coronavirus disease 2019. A case report and literature review. Medicine. 2022;101(35):e30464. [
DOI:10.1097/MD.0000000000030464] [
PMID] [
]
28. Allahyari F, Hosseinzadeh R, Nejad JH, Heiat M, Ranjbar R. A case report of simultaneous autoimmune and COVID-19 encephalitis. J Neurovirol. 2021;27(3):504-6. [
DOI:10.1007/s13365-021-00978-w] [
PMID] [
]
29. Alvarez Bravo G, Ramio IT. Anti-NMDA receptor encephalitis secondary to SARS-CoV-2 infection. Neurologia. 2020;35(9):699-700. [
DOI:10.1016/j.nrl.2020.07.013] [
]
30. Alvi JR, Sultan MH, Sultan T. Post COVID anti-NMDAR encephalitis in an adolescent girl. Pak J Neurol Sci. 2022;17(1):16-20. [
DOI:10.56310/pjns.v17i01.167]
31. Burr T, Barton C, Doll E, Lakhotia A, Sweeney M. N-methyl-d-aspartate receptor encephalitis associated with COVID-19 infection in a toddler. Pediatr Neurol. 2021;114:75-6. [
DOI:10.1016/j.pediatrneurol.2020.10.002] [
PMID] [
]
32. Derakhshani F, Ghazavi M, Hosseini N. Autoimmune encephalitis due to COVID-19 in a young patient. Iran J Child Neurol. 2023;17(2):135-42.
33. Kaur P, MV V, Madarkar BS. Infantile anti-N-methyl-D-aspartate receptor encephalitis post-SARS-CoV-2 infection. Indian Pediatr, 2022;59(4):343-4. [
DOI:10.1007/s13312-022-2506-5] [
PMID] [
]
34. Monti G, Giovannini G, Marudi A, Bedin R, Melegari A, Simone AM, et al. Anti-NMDA receptor encephalitis presenting as new onset refractory status epilepticus in COVID-19. Seizure. 2020;81:18-20. [
DOI:10.1016/j.seizure.2020.07.006] [
PMID] [
]
35. Panariello A, Bassetti R, Radice A, Rossotti R, Puoti M, Corradin M, et al. Anti-NMDA receptor encephalitis in a psychiatric Covid-19 patient: A case report. Brain Behav Immun. 2020;87:179-81. [
DOI:10.1016/j.bbi.2020.05.054] [
PMID] [
]
36. Saini L, Krishna D, Tiwari S, Goyal JP, Kumar P, Khera D, et al. Post-COVID-19 immune-mediated neurological complications in children: An ambispective study. Pediatr Neurol. 2022;136:20-7. [
DOI:10.1016/j.pediatrneurol.2022.06.010] [
PMID] [
]
37. Sanchez-Larsen A, Rojas-Bartolomé L, Fernández-Valiente M, Sopelana D. Anti-NMDA-R encephalitis post-COVID-19: Case report and proposed physiopathologic mechanism. Neurologia. 2023;38(7):513-6. [
DOI:10.1016/j.nrl.2022.08.002] [
]
38. Sanchez-Morales AE, Urrutia-Osorio M, Camacho-Mendoza E, RosalesPedraza G, Davila-Maldonado L, Gonzalez-Duarte A, et al. Neurological manifestations temporally associated with SARS-CoV-2 infection in pediatric patients in Mexico. Childs Nerv Syst. 2021;37(7):2305-12. [
DOI:10.1007/s00381-021-05104-z] [
PMID] [
]
39. Sarigecili E, Arslan I, Ucar HK, Celik U. Pediatric anti-NMDA receptor encephalitis associated with COVID-19. Childs Nerv Syst. 2021;37(12):3919-22. [
DOI:10.1007/s00381-021-05155-2] [
PMID] [
]
40. Valadez-Calderon J, Navarro AO, Rodriguez-Chavez E, Vera-Lastra O. Co-expression of anti-NMDAR and anti-GAD65 antibodies. A case of autoimmune encephalitis in a post-COVID-19 patient. Neurologia. 2022;37(6):503-4. [
DOI:10.1016/j.nrl.2021.09.003]
41. Joubert B, Dalmau J. The role of infections in autoimmune encephalitides. Rev Neurol. 2019;175(7-8):420-6. [
DOI:10.1016/j.neurol.2019.07.004] [
PMID]
42. Swayne A, Warren N, Prain K, Gillis D, Wong R, Blum S. Analysing triggers for anti-NMDA-receptor encephalitis including herpes simplex virus encephalitis and ovarian teratoma: Results from the Queensland Autoimmune Encephalitis cohort. Intern Med J. 2021;52(11):1943-9. [
DOI:10.1111/imj.15472] [
PMID]
43. Armangue T, Leypoldt F, Málaga I, Raspall‐Chaure M, Marti I, Nichter C, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol. 2014;75(2):317-23. [
DOI:10.1002/ana.24083] [
PMID] [
]
44. Armangue T, Spatola M, Vlagea A, Mattozzi S, Cárceles-Cordon M, Martinez-Heras E, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: A prospective observational study and retrospective analysis. Lancet Neurol. 2018;17(9):760-72. [
DOI:10.1016/S1474-4422(18)30244-8] [
PMID]
45. Mohammad SS, Sinclair K, Pillai S, Merheb V, Aumann TD, Gill D, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-d-aspartate receptor or dopamine-2 receptor. Mov Disord. 2014;29(1):117-22. [
DOI:10.1002/mds.25623] [
PMID]
46. Leypoldt F, Titulaer MJ, Aguilar E, Walther J, Bönstrup M, Havemeister S, et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: Case report. Neurology. 2013;81(18):1637-9. [
DOI:10.1212/WNL.0b013e3182a9f531] [
PMID] [
]
47. Salovin A, Glanzman J, Roslin K, Armangue T, Lynch DR, Panzer JA. Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection. Neurol Neuroimmunol Neuroinflamm. 2018;5(4):e458. [
DOI:10.1212/NXI.0000000000000458] [
PMID] [
]
48. Schäbitz WR, Rogalewski A, Hagemeister C, Bien C. VZV brainstem encephalitis triggers NMDA receptor immunoreaction. Neurology. 2014;83(24):2309-11. [
DOI:10.1212/WNL.0000000000001072] [
PMID]
49. Ma J, Zhang T, Jiang L. Japanese encephalitis can trigger anti-N-methyl-D-aspartate receptor encephalitis. J Neurol. 2017;264:1127-31. [
DOI:10.1007/s00415-017-8501-4] [
PMID]
50. Xu CL, Liu L, Zhao WQ, Li JM, Wang RJ, Wang SH, et al. Anti-N-methyl-D-aspartate receptor encephalitis with serum anti-thyroid antibodies and IgM antibodies against Epstein-Barr virus viral capsid antigen: A case report and one year follow-up. BMC Neurol. 2011;11:1-7. [
DOI:10.1186/1471-2377-11-149] [
PMID] [
]
51. Ioannidis P, Papadopoulos G, Koufou E, Parissis D, Karacostas D. Anti-NMDA receptor encephalitis possibly triggered by measles virus. Neurol Belg. 2015;115:801-2. [
DOI:10.1007/s13760-015-0468-2] [
PMID]
52. Moloney PB, Hutchinson S, Heskin J, Mulcahy F, Langan Y, Conlon NP, et al. Possible N-methyl-D-aspartate receptor antibody-mediated encephalitis in the setting of HIV cerebrospinal fluid escape. J Neurol. 2020;267(5):1348-52. [
DOI:10.1007/s00415-019-09693-3] [
PMID]
53. Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, Villegas-Rojas MM, León-Aguilar AM, et al. Elucidating the neuropathologic mechanisms of SARS-CoV-2 infection. Front Neurol. 2021;12:660087. [
DOI:10.3389/fneur.2021.660087] [
PMID] [
]
54. Wang H. COVID−19, anti-NMDA receptor encephalitis, and microRNA. Front Immunol. 2022;13:825103. [
DOI:10.3389/fimmu.2022.825103] [
PMID] [
]
55. Muñoz-Lopetegi A, de Bruijn MA , Boukhrissi S, Bastiaansen AE, Nagtzaam MM. Neurologic syndromes related to anti-GAD65. Clinical and serologic response to treatment. Neurol Neuroimmunol Neuroinflamm 2020;7(3):e696. [
DOI:10.1212/NXI.0000000000000696] [
PMID] [
]
56. Emekli AS, Parlak A, Göcen NY, Kürtüncü M. Anti-GAD associated post-infectious cerebellitis after COVID-19 infection. Neurol Sci. 2021;42:3995-4002. [
DOI:10.1007/s10072-021-05506-6] [
PMID] [
]
57. Salari M, Harofteh ZB, Etemadifar M. Autoimmune meningoencephalitis associated with anti‐glutamic acid decarboxylase antibody following COVID‐19 infection: A case report. Clin Case Rep. 2022;10(12):e6597. [
DOI:10.1002/ccr3.6597] [
PMID] [
]
58. Martin S, Azzouz B, Morel A, Trenque T. Anti-NMDA receptor encephalitis and vaccination: A disproportionality analysis. Front Pharmacol. 2022;13:940780. [
DOI:10.3389/fphar.2022.940780] [
PMID] [
]
59. Flannery P, Yang I, Keyvani M, Sakoulas G. Acute psychosis due to anti-N-methyl D-aspartate receptor encephalitis following COVID-19 vaccination: A case report. Front Neurol. 2021;12:764197. [
DOI:10.3389/fneur.2021.764197] [
PMID] [
]
60. Abdelhady M, Husain MA, Hawas Y, Elazb MA, Mansour LS, Mohamed M, et al. Encephalitis following COVID-19 vaccination: A systematic review. Vaccines. 2023;11(3):576. [
DOI:10.3390/vaccines11030576] [
PMID] [
]
61. Martin S, Azzouz B, Morel A, Tralongo F, Dorguin G, Trenque T. Anti-NMDA receptor encephalitis and COVID-19 vaccination? Fundam Clin Pharmacol. 2022;36 :99. [
DOI:10.3389/fphar.2022.940780] [
PMID] [
]